168 research outputs found

    A Simple Decentralized Charging Control Scheme of Plug-in Electric Vehicles for Alleviating Wind Farm Intermittency

    Get PDF
    AbstractVariable power output from large-scale wind farms present new challenge of balancing power system load with generation. To alleviate this problem, this paper proposes a decentralized charging control scheme for plug-in electric vehicles (PEVs) to neutralize wind power fluctuations. In the proposed scheme, each PEV autonomously adjusts its power in response to a real-time directing signal and based on its own urgency level of charging. No intelligent central control entity is needed. Simulation results demonstrate the effectiveness of the proposed charging control in directing PEV power to counteract wind power fluctuations. Also, proportionally fair distribution of counteracting duties among PEVs can be achieved so as to meet heterogeneous charging requirements of PEV users, and the total utility of the PEV fleet is proven to be maximized

    A Framework for Self-healing Smart Grid with Incorporation of Multi-Agents

    Get PDF
    AbstractA hierarchical framework incorporated with multi-agents is proposed for enabling the self-healing of smart grid. While the central control agent in the upper layer adopts the multiple-step Taylor series function (MTSF) method to efficiently predict the system stability using wide area measurement system (WAMS) data, agents with shared information in the lower layer protect the devices in plug-in micro grids more effectively and adaptively compared with traditional protection. The proposed framework shows the self-healing capability for ensuring the security of smart grid by reliably preventing faults and flexibly coordinating generations. Simulation results of modified WSCC 3-generator system with plug-in micro grids have confirmed the validity of the proposed framework

    Interfacing branching random walks with Metropolis sampling: constraint release in auxiliary-field quantum Monte Carlo

    Full text link
    We present an approach to interface branching random walks with Markov chain Monte Carlo sampling, and to switch seamlessly between the two. The approach is discussed in the context of auxiliary-field quantum Monte Carlo (AFQMC) but is applicable to other Monte Carlo calculations or simulations. In AFQMC, the formulation of branching random walks along imaginary-time is needed to realize a constraint to control the sign or phase problem. The constraint is derived from an exact gauge condition, and is in practice implemented approximately with a trial wave function or trial density matrix, which can break exactness in the algorithm. We use the generalized Metropolis algorithm to sample a selected portion of the imaginary-time path after it has been produced by the branching random walk. This interfacing allows a constraint release to follow seamlessly from the constrained-path sampling, which can reduce the systematic error from the latter. It also provides a way to improve the computation of correlation functions and observables that do not commute with the Hamiltonian. We illustrate the method in atoms and molecules, where improvements in accuracy can be clearly quantified and near-exact results are obtained. We also discuss the computation of the variance of the Hamiltonian and propose a convenient way to evaluate it stochastically without changing the scaling of AFQMC

    Cluster size convergence of the density matrix embedding theory and its dynamical cluster formulation: A study with an auxiliary-field quantum Monte Carlo solver

    Get PDF
    We investigate the cluster size convergence of the energy and observables using two forms of density matrix embedding theory (DMET): the original cluster form (CDMET) and a new formulation motivated by the dynamical cluster approximation (DCA-DMET). Both methods are applied to the half-filled one- and two-dimensional Hubbard models using a sign-problem free auxiliary-field quantum Monte Carlo impurity solver, which allows for the treatment of large impurity clusters of up to 100 sites. While CDMET is more accurate at smaller impurity cluster sizes, DCA-DMET exhibits faster asymptotic convergence towards the thermodynamic limit. We use our two formulations to produce new accurate estimates for the energy and local moment of the two-dimensional Hubbard model for U / t = 2,4,6. These results compare favorably with the best data available in the literature, and help resolve earlier uncertainties in the moment for U / t = 2

    Automatic landslide identification by Dual Graph Convolutional Network and GoogLeNet model-a case study for Xinjiang province, China

    Get PDF
    Landslides are a natural disaster that exists widely in the world and poses a great threat to human life and property, so it is of great importance to identify and locate landslides. Traditional manual interpretation can effectively identify landslides, but its efficiency is very low for large interpreted areas. In this sense, a landslide recognition method based on the Dual Graph Convolutional Network (DGCNet) is proposed to identify the landslide in remote sensing images quickly and accurately. The remote sensing image (regional remote sensing image) of the northern mountainous area of Tuergen Township, Xinyuan County, Xinjiang Province, was obtained by GeoEye-1 (spatial resolution: 0.5 m). Then, the DGCNet is used to train the labeled images, which finally shows good accuracy of landslide recognition. To show the difference with the traditional convolutional network model, this paper adopts a convolution neural network algorithm named GoogLeNet for image recognition to carry out a comparative analysis, the remote sensing satellite images (single terrain image) of Xinyuan County, Xinjiang Province is used as the data set, and the prediction accuracy is 81.25%. Compared with the GoogLeNet model, the DGCNet model has a larger identification range, which provides a new method for landslide recognition of large-scale regional remote sensing images, but the performance of DGCNet is highly dependent on the quality and characteristics of the input image. If the input data quality is poor or the image structure is unclear, the model’s performance may decline

    Stripe order in the underdoped region of the two-dimensional Hubbard model

    Get PDF
    Competing inhomogeneous orders are a central feature of correlated electron materials including the high-temperature superconductors. The two- dimensional Hubbard model serves as the canonical microscopic physical model for such systems. Multiple orders have been proposed in the underdoped part of the phase diagram, which corresponds to a regime of maximum numerical difficulty. By combining the latest numerical methods in exhaustive simulations, we uncover the ordering in the underdoped ground state. We find a stripe order that has a highly compressible wavelength on an energy scale of a few Kelvin, with wavelength fluctuations coupled to pairing order. The favored filled stripe order is different from that seen in real materials. Our results demonstrate the power of modern numerical methods to solve microscopic models even in challenging settings
    • …
    corecore